Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data

نویسندگان

  • Martin Převorovský
  • Martina Hálová
  • Kateřina Abrhámová
  • Jiří Libus
  • Petr Folk
چکیده

Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5' and 3' splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SnapShot-Seq: A Method for Extracting Genome-Wide, In Vivo mRNA Dynamics from a Single Total RNA Sample

mRNA synthesis, processing, and destruction involve a complex series of molecular steps that are incompletely understood. Because the RNA intermediates in each of these steps have finite lifetimes, extensive mechanistic and dynamical information is encoded in total cellular RNA. Here we report the development of SnapShot-Seq, a set of computational methods that allow the determination of in viv...

متن کامل

Sequencing of lariat termini in S. cerevisiae reveals 5' splice sites, branch points, and novel splicing events.

Pre-mRNA splicing is a central step in the shaping of the eukaryotic transcriptome and in the regulation of gene expression. Yet, due to a focus on fully processed mRNA, common approaches for defining pre-mRNA splicing genome-wide are suboptimal-especially with respect to defining the branch point sequence, a key cis-element that initiates the chemistry of splicing. Here, we report a complement...

متن کامل

Genome-wide approaches to monitor pre-mRNA splicing.

Pre-mRNA processing is an essential control-point in the gene expression pathway of eukaryotic organisms. The budding yeast Saccharomyces cerevisiae offers a powerful opportunity to examine the regulation of this pathway. In this chapter, we will describe methods that have been developed in our lab and others to examine pre-mRNA splicing from a genome-wide perspective in yeast. Our goal is to p...

متن کامل

A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional.

Recent ChIP experiments indicate that spliceosome assembly and splicing can occur cotranscriptionally in S. cerevisiae. However, only a few genes have been examined, and all have long second exons. To extend these studies, we analyzed intron-containing genes with different second exon lengths by using ChIP as well as whole-genome tiling arrays (ChIP-CHIP). The data indicate that U1 snRNP recrui...

متن کامل

A Genetic Screen for Pre-mRNA Splicing Mutants of Arabidopsis thaliana Identifies Putative U1 snRNP Components RBM25 and PRP39a

In a genetic screen for mutants showing modified splicing of an alternatively spliced GFP reporter gene in Arabidopsis thaliana, we identified mutations in genes encoding the putative U1 small nuclear ribonucleoprotein (snRNP) factors RBM25 and PRP39a. The latter has not yet been studied for its role in pre-messenger RNA (pre-mRNA) splicing in plants. Both proteins contain predicted RNA-binding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016